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The dust disk dynami
s in week-nonlinear regimeVi
tor M. Zhuravlev, Alexander V. PatrushevUlyanovsk State Universityzhuravl�sv.ulsu.ruWe investigate the problem of self-gravitating dust disk dynami
s in a stati
 state taking intoa

ount nonlinear effe
ts. For this purpose S
hr�odinger-type equation in
luding the mass 
onser-vation law is used for the whole des
ription of hydrodynami
 flows of self-gravitating dust. Wehave shown a purely hydrodynami
 me
hanism of ring formation in the radial dire
tion by takinginto a

ount nonlinearity in the lowest order of expansion parameter, whi
h determines an order ofmagnitude of flow.1 Introdu
tionSelf-gravitating systems are of great interest for investigation in astrophysi
sbe
ause of their widespread appearan
e [1, 2, 3℄. Su
h systems are diffi
ultfor analyti
al analysis when we 
onsider a lot of fa
tors, and therefore thestandard way of analysis is in the terms of density perturbations. As a resultthe problem may be entirely linearized, and it fa
ilitates analysis, but in thisway one 
annot entirely investigate some spe
ifi
 effe
ts 
aused by nonlineardynami
s of su
h systems. In this paper the problem is also 
onsidered interms of perturbation theory, but it is possible to take into a

ount nonlineareffe
ts of dynami
s in the lowest order by means of elimination of se
ular intime expansion terms. S
hr�odinger-type equation1 representing 
ombined de-s
ription of Euler fluid dynami
s together with the 
ontinuity equation is used1Of 
ourse we 
onsider this equation only as auxiliary one without Plank's 
onstant and any "quantumsense". 1
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for determination of potential hydrodynami
 flow. Dynami
s of rather outly-ing disk regions is dis
ussed. These regions are situated far from the 
entralmassive obje
t and the disk surfa
e. Internal boundaries of these regions arepredetermined by 
ongruen
e 
ondition of the self-gravitating dust potentialand the 
ompa
t body potential. The main aim of this paper is to 
onsider aring stru
ture formation due to nonlinear hydrodynami
 flow of self-gravitatingdust. The internal region dynami
s nearby the 
entral obje
t and the disk sur-fa
e must be 
onsidered as the internal solution problem similarly to boundarylayers problem.2 The usage of S
hr�odinger-type equation in Euler fluiddynami
sLet us 
onsider S
hr�odinger-type equation:
iΨt + α(t)∆Ψ − U(x, t)Ψ = 0. (1)Here Ψ is a dimensionless 
omplex wave fun
tion, i is an imaginary unit, α =

α(t) is a 
ertain dimensionless real fun
tion of time t, U(x, t) is a real potential-like energy fun
tion, ∆ is three-dimensional Lapla
ian.Besides the (1) it is ne
essary to 
onsider the 
omplex 
onjugate equation:
−iΨ∗

t + α(t)∆Ψ∗ − U(x, t)Ψ∗ = 0.Multiplying the previous equation by Ψ and (1) by Ψ∗, and subtra
ting these
ond expression from the first one, we get
∂

∂t
|Ψ|2 + div

(

iα|Ψ|2∇lnΘ
)

= 0, (2)where Θ = Ψ∗/Ψ. Dividing (1) and the 
onjugate equation by Ψ and Ψ∗
orrespondingly, and summing these expressions gives
i
∂

∂t
lnΘ + α

∆Ψ

Ψ
+ α

∆Ψ∗

Ψ∗
− 2U = 0. (3)2



(2) 
an be interpreted as differential 
onservation law for density |Ψ|2 of fluidmoving with the velo
ity v = iα∇lnΘ.For an arbitrary Euler flow v we have the following identity:
vt + (v,∇)v ≡

1

2
∇|v|2 + [v × rotv] + vt. (4)Note that in our 
ase the field v is potential: rotv = 0. For analysis of right-hand side of (4) one 
an use (3). As a result it follows the identity

vt +
1

2
∇|v|2 = α2∇



−2
∆|Ψ|

|Ψ|



 + 2α∇U +
α̇

α
v.This result through identity (4) 
an be 
ombined into the following Euler'sequation for the flow v

vt + (v,∇)v = α∇



−2α
∆|Ψ|

|Ψ|
+ 2U



 + κv, (5)where κ = −α̇/α = κ(t) is a 
oeffi
ient of a linear fri
tion as it is 
alled in fluiddynami
s. Corresponding fri
tional for
e in the system −κv 
an be regardedas a result of 
ollisions between dust parti
les. In fa
t, this rather simplisti
approa
h doesn't give an exa
t pi
ture. Nevertheless, it allows to estimate theinfluen
e of a dissipation on a stationary dust distribution. Below we dis
ussthe 
ase κ = κ0 = const. Dependen
e κ on time 
an be interpreted as parti
lesintera
tion to be 
hanged in time, e. g. due to in
reasing parti
les in size .Consider for
e per unit mass in the momentum equation in details. One 
ansee from (5) the for
e is potential. In real fluid dynami
s, however, right handside in Euler equation in the presen
e of the field of a potential for
e is thefollowing
F = −

1

ρ
∇P −∇φ, (6)where ρ is density of fluid or gas , P is pressure, φ is potential of for
e per unitmass is 
onsidered below to be Newtonian for
e. We investigate dust obje
ts in3



this paper. And the state equation for dust is well known as p = 0. Therefore,for
e per unit mass (6) 
onsists of dust self-gravitation and it may in
ludegravitation for
e from a massive obje
t, whi
h is nearby the dust. Then wefind the relation between Euler fluid dynami
s and S
hr�odinger-type equation
− 2α2∆|Ψ|

|Ψ|
+ 2αU = −φ. (7)3 The hydrodynami
 equations for self-gravitating dustThe problem 
onsidered in this paper 
an be formulated in the following way.We investigate dust obje
ts having the equation of state P = 0. And dust is inself-gravitation in terms of Euler fluid dynami
s. So, we 
ome to the system ofequations for self-gravitating obje
ts dynami
s, whi
h 
onsists of S
hr�odinger-type equation (1), the 
on
ordan
e equation and the Poisson one, whi
h is:

∆φ = 4πG(ρ0|Ψ|2 + σδ(z) + M0δ(r)), (8)where ρ0 - a 
hara
teristi
 density su
h that the fun
tion of density is
ρ = ρ0|Ψ|2.The se
ond z-dire
tion δ-like sour
e item in right hand side of the equationfor potential des
ribes a matter originally 
on
entrated in thin disk with surfa
edensity σ = σ(x, y, t), where x, y are Cartesian 
oordinates at the disk surfa
e.Now we shall make a nondimensionalization as following:

r̃ = r/R0, τ = t/T0, Φ = φ/φ0.And make a notion : α(τ) = α0f(τ), where
f(τ) = exp { −

τ
∫

0

κ(τ ′)dτ ′}4



is a dimensionless fun
tion of time. The system of equations then reads
iΨτ + εf(τ)∆̃Ψ − WΨ = 0, (9)
−2ε2f 2(τ)

∆̃|Ψ|

|Ψ|
+ 2εf(τ)W = −

φ0T
2
0

R2
0

Φ, (10)
∆̃Φ =

4πGρ0R
2
0

φ0
|Ψ|2, (11)where ε = T0α0/R

2
0 - is the dimensionless 
hara
teristi
 parameter, estimatingan order of magnitude of the dimensionless flow in the system:

V = iεf(τ)
∂

∂r̃
lnΘ,

W = UT0 is the non-dimensional 
olle
tive potential.Below we omit ,̃ implying the equations to be written in a dimensionlessform.In this paper we are interested in 
ases su
h that ε << 1 is a small param-eter, i.e. the velo
ity of flow is small and the system in a gravitation field isabout equilibrium .Resear
hing of (9)-(11) shows that for the equations to des
ribe non-trivialsituation we must use the 
onditions as follows:
φ0T

2
0

R2
0

= ε,
4πGρ0R

2
0

φ0
= µ = O(1),where µ is the first-order 
onstant to ε. From this it follows φ0 =

εR2
0/T

2
0 , ρ0 = εµ/(4πGT 2

0 ), i.e. the dust density and the self gravitationalpotential are small and have the same order with respe
t to ε.4 Approximate equationsLet us seek the solutions as power series in ε:
Ψ = Ψ0 +

∞
∑

n=1

εnΨn, Φ = Φ0 +
∞
∑

n=1

εnΦn, W = W0 +
∞
∑

n=1

εnWn.5



Sin
e small parameter ε in (9) and (10) is at the derivative of higher order,we 
an expe
t boundary layers in the system to appear. They 
ould exist inthe 
enter of the field and at the surfa
e of the disk. This boundary layers are
onne
ted with nonlinear mode not with vis
osity. Outside of this boundarylayers, i.e. far from the field 
enter and the disk surfa
e we use ordinary axial
oordinate z. Nearby the disk surfa
e we must use 
oordinate Z = z/ε. Note,
δ-like sour
e in (11) must be taken in a

ount only in internal solution.For external region we have the system of equations by substituting theexpansions in equations in two first orders :

iΨ0,τ = W0Ψ0; 2f(τ)W0 = −Φ0; ∆Φ0 = µ|Ψ0|
2; (12)

iΨ1,τ = W0Ψ1 + W1Ψ0 − ∆Ψ0,

−2f 2(τ)
∆|Ψ0|

|Ψ0|
+ 2f(τ)U1 = Φ1, ∆Φ1 = µ(Ψ∗

0Ψ1 + Ψ∗
1Ψ0). (13)Suppose the flow and the gravitational field in lowest order are stationary; thenwe have solution in this order:

Ψ0 = C0(r) exp
{

−i
∫

W0(r, τ)dτ
}

, W0 = −
1

2f(τ)
Φ0,where fun
tion Φ0 is to be obtained from the Poisson equation:

∆Φ0 = µ|C0|
2. (14)After some simple manipulations, we arrive at the following solutions at thefirst order :

Ψ1 = C1(r)e
−iχ(r,τ) − ie−iχ(r,τ)

τ
∫

0

[

W1(r, τ
′)C0(r) − eiχ(r,τ ′)f(τ ′)∆Ψ0

]

dτ ′,

W1 = −
1

2f(τ)
Φ1 + f(τ)

∆|C0|

|C0|
.Here

χ(r, τ) =
∫

W0(r, τ)dτ6



Substituting these expressions in the equation for Φ1 (13)we get:
∆Φ1 = µ(C0C

∗
1 + C1C

∗
0) + iµ[C∗

0∆C0 − C∗
0∆C0]Q(τ) − µH(τ)∇

(

|C0|
2∇Φ0

)

.(15)Here
Q(τ) =

τ
∫

0

f(τ ′)dτ ′, H(τ) =
τ

∫

0

τ ′

∫

0

dτ ′′

f(τ ′′)
f(τ ′)dτ ′,If κ = κ0 = const then

Q(τ) =
1

κ0
(1 − e−κ0τ ), H(τ) = τ

1

κ0
−

1

κ2
0

(1 − e−κ0τ ).One 
an see that Q(τ) de
ays exponentially to a 
onstant, whereas H(τ) in-
reases linearly with time, i.e. 
orresponding 
omponent is se
ular, and forstable solution it should be
ome zero. Hen
e, we 
ome to the following: takinginto a

ount (14), fun
tions C0(r) and W0(r) must obey the equations su
hthat
∇

(

|C0|
2∇Φ0

)

= 0, (16)
∆Φ0 =

µ

2
|C0|

2. (17)Then equation (15) redu
es to
∆Φ1 = µ(C0C

∗
1 + C1C

∗
0) +

2µ

κ0
div[|C0|

2∇Θ0]
(

1 − e−κ0τ
)

, (18)where C1(r) 
an be obtained from stationary 
ondition at the next order ofexpansion , and Θ0 = (i/2)ln(C∗
0/C0) - is still an arbitrary fun
tion. Thesolution for W1 follows from the first equation in (13).The interpretation of obtained equations follows from the expression for theflow velo
ity in the first order

V1 = v1 + v2, v1 = ε∇Φ0, v2 = 2εf(τ)∇Θ0(r) = 2εe−κ0τ∇Θ0(r).7



Right hand member in (15) is determined by the sour
e of mass, whi
h isasso
iated with the se
ond flow in the system. This flow tends to a fixed spa
edistribution as τ → ∞. Equation (16) is the law of 
onservation of mass forthe flow v1. Suppose sour
es of mass do not exist; then the se
ond addend inright hand side of (15) be
omes zero
div[|C0|

2∇Θ0] = 0. (19)If not, we must expli
itly write down the sour
e of mass by means of join ofexternal and internal solution. The first flow is stationary and it is asso
iated infirst order with stationary fall in the field Φ0. Existen
e of dissipation leads tofall of parti
les with the fixed velo
ity v1 instead of falling with the a

eleration
g = −∇Φ0.5 Axial-symmetri
 solutionsOur aim is to 
onsider models with axial symmetry. Take 
ylindri
al polar
oordinates r, z, ϕ implying dependen
e fun
tions of the system on r and z

Φ0(r, z) = u(r)h(z), R(r, z) = p(r)h(z).Thus one 
an find the following equations for u(r), p(r), h(z):
u′′

u
+

1

r

u′

u
+

h′′

h
=

µ

2

p

u
,

u′

u

p′

p
+

(h′)2

h2
+

µ

2

p

u
= 0.Separation of variables implies

h(z) = h0e
−λz.We should suppose dust density and potential to de
ay while moving offthe disk in the line of z → +∞ as well as z → −∞. Thus if λ > 0, we have

h(z) = h0e
−λ|z| far from the disk surfa
e z = 0.8



So we obtain equations for u and p

u′′ +
1

r
u′ + λ2u =

µ

2
p, (20)

u′

u

p′

p
+ λ2 +

µ

2

p

u
= 0. (21)Let us seek the solution for p as: p(r) = q(r)u′(r). Substituting p in aboveform into equation (21) and using (20) yield

q′ −
1

r
q + µq2 = 0.This equation is easy to solve and general solution is

q(r) =
2

µ

r

r2 + Q0
,here Q0 - integral 
onstant. Finally we get

p(r) =
2

µ

r

r2 + Q0
u′(r), (22)where u(r) now follows the equation

u′′ +
Q0

r(r2 + Q0)
u′ + λ2u = 0. (23)Fun
tion p(r) follows, 
orrespondingly, the equation

p′′ +
2r2 − Q0

r(r2 + Q0)
p′ + λ2p = 0. (24)At small Q or large r the equation for u(r) is similar to os
illation equationwith wave number λ and, hen
e, u(r) 
hanges the sign quasi-periodi
ally aswell as its derivative.So we 
an establish behavior of dust distribution. The definition of p(r)implies p(r) > 0. The density be
omes zero together with the gradient of9



potential a

ording to (22). Thus it follows that disk is partitioned on ringswhi
h are separated by thin gaps. Analysis of equations for flow shows that dustfrom 
ertain ring does not penetrate the bounders. The gradients of potentialin adja
ent rings, however, have unlike signs due to its quasi-periodi
 behavior.But if we require 
ontinuity of density and its derivative at boundary points,we immediately obtain that density must attain a negative value along with
u′. Therefore, the derivative of density has dis
ontinuity at boundaries of ringsand in ea
h ring with 
onstant sign of u′ we should 
hoose the sign and themagnitude of Q to satisfy requirement p(r) > 0.Generally boundary 
onditions for 
al
ulation of ring parameters 
ome to
ontinuity of potential and its derivative at ring boundaries (se
ond derivativeis dis
ontinuous). It follows from equality of for
es operating at disk boundaries.Let ri, i = 1, 2 . . . be boundary points in whi
h u′|ri

= 0. Then equationsfor our model are:
u′′

j +
Qj

r(r2 + Qj)
u′

j + λ2
juj = 0, r ∈ [rj, rj+1]with boundary 
onditions

u′
j(rj) = 0, u′

j(rj+1) = 0,

uj−1(rj) = uj(rj), uj+1(rj+1) = uj(rj+1),

πµ

rj+1
∫

rj

r2

(r2 + Qj)
u′

j(r)dr = σj.Here σj is a 
onstant surfa
e density in j ring.
10
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Fig.1. 1 - potential u(r) , 2 - density p(r). Ring parameters : λ = 1,
µ = 2, Q0 = 10, Q1 = −19.85, Q2 = −19.7, Q3 = −155, Q4 = −108.Figure 1 illustrates the different possible solutions satisfying the boundary
onditions.6 Dis
ussionWe have investigated the formation of rings with too narrow gaps betweenthem as t → ∞. And the width of gaps are 
onsiderably smaller then diskrings one. The masses of rings and distribution of density are determined by11



the 
oeffi
ient Q, that 
an be unique for ea
h ring. Obtained solutions 
an beasso
iated with dust distribution in real disk systems. However, to des
ribesystems like internal Saturn's rings we must use other methods be
ause ourapproa
h is not suitable for internal regions. Radial orbital flow indu
ed bythe 
entral mass is the main 
omponent of dynami
s for internal rings. Nearbythe planet the radial velo
ity is great but we assume the me
hanism of ringformation to be the same and it 
an be modified by 
orre
tions 
onne
ted withthe main orbital flow. And it will be the obje
t of another paper.Referen
es[1℄ Fridman, A. M. and Polya
henko, V. L. (1984) Physi
s of GravitatingSystems, Vols 1 and 2. Springer, New York.[2℄ Hubert Klahr and D. N. C. Lin IdentifiersDust Distribution in Gas Disks.II. Self-indu
ed Ring Formation through a Clumping Instability ApJ,2005,632,1113.[3℄ James R.Graham, Astrophysi
al Gas Dynami
s.http://astron.berkeley.edu/∼jrg/ay202/
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