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We investigate the problem of self-gravitating dust disk dynamics in a static state taking into
account nonlinear effects. For this purpose Schrodinger-type equation including the mass conser-
vation law is used for the whole description of hydrodynamic flows of self-gravitating dust. We
have shown a purely hydrodynamic mechanism of ring formation in the radial direction by taking
into account nonlinearity in the lowest order of expansion parameter, which determines an order of
magnitude of flow.

1 Introduction

Self-gravitating systems are of great interest for investigation in astrophysics
because of their widespread appearance [Il, 2, B]. Such systems are difficult
for analytical analysis when we consider a lot of factors, and therefore the
standard way of analysis is in the terms of density perturbations. As a result
the problem may be entirely linearized, and it facilitates analysis, but in this
way one cannot entirely investigate some specific effects caused by nonlinear
dynamics of such systems. In this paper the problem is also considered in
terms of perturbation theory, but it is possible to take into account nonlinear
effects of dynamics in the lowest order by means of elimination of secular in
time expansion terms. Schrodinger-type equation! representing combined de-
scription of Euler fluid dynamics together with the continuity equation is used

LOf course we consider this equation only as auxiliary one without Plank’s constant and any "quantum
sense".
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for determination of potential hydrodynamic flow. Dynamics of rather outly-
ing disk regions is discussed. These regions are situated far from the central
massive object and the disk surface. Internal boundaries of these regions are
predetermined by congruence condition of the self-gravitating dust potential
and the compact body potential. The main aim of this paper is to consider a
ring structure formation due to nonlinear hydrodynamic flow of self-gravitating
dust. The internal region dynamics nearby the central object and the disk sur-
face must be considered as the internal solution problem similarly to boundary
layers problem.

2 The usage of Schrodinger-type equation in Euler fluid
dynamics

Let us consider Schrodinger-type equation:
iV + a(t) AV — U(x,t)¥ = 0. (1)

Here W is a dimensionless complex wave function, ¢ is an imaginary unit, a =
a(t) is a certain dimensionless real function of time ¢, U(x, t) is a real potential-
like energy function, A is three-dimensional Laplacian.

Besides the () it is necessary to consider the complex conjugate equation:

iU+ (AT — U(x, )T = 0.

Multiplying the previous equation by ¥ and () by ¥*, and subtracting the
second expression from the first one, we get

%|\If|2 + div (ia\\II\QVIHG) =0, (2)

where © = U*/WU. Dividing () and the conjugate equation by ¥ and ¥*
correspondingly, and summing these expressions gives

Do AT AT
9. AV
"ot Ty

— 92U = 0. (3)



([2) can be interpreted as differential conservation law for density [¥|? of fluid
moving with the velocity v =1aVIn®.
For an arbitrary Euler flow v we have the following identity:

1
vi+ (v, V)v = §V|v|2 + [v X rotv] + vy (4)

Note that in our case the field v is potential: rotv = 0. For analysis of right-
hand side of (H) one can use (B]). As a result it follows the identity

AlV|

1
vlmL§V|v|2 = o’V [ ]

]+2 VU+ v

This result through identity (#) can be combined into the following Euler’s
equation for the flow v

AU
vi+ (v,V)v=aV [ 2@% + 2U] + KV, (5)
where k = —&/a = k(t) is a coefficient of a linear friction as it is called in fluid

dynamics. Corresponding frictional force in the system —xv can be regarded
as a result of collisions between dust particles. In fact, this rather simplistic
approach doesn’t give an exact picture. Nevertheless, it allows to estimate the
influence of a dissipation on a stationary dust distribution. Below we discuss
the case kK = Ky = const. Dependence k on time can be interpreted as particles
interaction to be changed in time, e. g. due to increasing particles in size .

Consider force per unit mass in the momentum equation in details. One can
see from (H) the force is potential. In real fluid dynamics, however, right hand
side in Euler equation in the presence of the field of a potential force is the
following

F —%VP _ve, (6)

where p is density of fluid or gas , P is pressure, ¢ is potential of force per unit
mass is considered below to be Newtonian force. We investigate dust objects in
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this paper. And the state equation for dust is well known as p = 0. Therefore,

force per unit mass () consists of dust self-gravitation and it may include

gravitation force from a massive object, which is nearby the dust. Then we

find the relation between Euler fluid dynamics and Schrédinger-type equation
AlY|

— 2&2W + 20éU = —¢. (7)

3  The hydrodynamic equations for self-gravitating dust

The problem considered in this paper can be formulated in the following way.
We investigate dust objects having the equation of state P = 0. And dust is in
self-gravitation in terms of Euler fluid dynamics. So, we come to the system of
equations for self-gravitating objects dynamics, which consists of Schrodinger-
type equation ([), the concordance equation and the Poisson one, which is:

A¢ = 4nG(po|T|* + 06 (2) + Mod (1)), (8)
where pg - a characteristic density such that the function of density is
p=pol V[

The second z-direction d-like source item in right hand side of the equation
for potential describes a matter originally concentrated in thin disk with surface
density o = o(x,y,t), where z, y are Cartesian coordinates at the disk surface.

Now we shall make a nondimensionalization as following:

f‘ZI‘/Ro, th/T(), q>=¢/¢0

And make a notion : a(7) = agf(7), where

f(r) = exp{ — [ s(r)ar'}



is a dimensionless function of time. The system of equations then reads

iV, +ef(T)AV — WT =0, (9)
A 2
oA oy = —2lig (10)
V| R
2
Ae = TRy, (1)
0

where & = Tyayy/ R? - is the dimensionless characteristic parameter, estimating
an order of magnitude of the dimensionless flow in the system:

V =ic f(T)%ln@,

W = UTj is the non-dimensional collective potential.

Below we omit ~, implying the equations to be written in a dimensionless
form.

In this paper we are interested in cases such that ¢ << 1 is a small param-
eter, i.e. the velocity of flow is small and the system in a gravitation field is
about equilibrium .

Researching of ()-(IIl) shows that for the equations to describe non-trivial
situation we must use the conditions as follows:

¢oTy ArGpo R}
=e, — =u=0(1),
where p is the first-order constant to €. From this it follows ¢y =

eR2/TE, po = ep/(AnGTE), i.e. the dust density and the self gravitational
potential are small and have the same order with respect to ¢.

4  Approximate equations

Let us seek the solutions as power series in &:

\IJ:\I’0+Z<€”\IJH, (I):(I)0+Z€nq)n, W:W0+Z€an

n=1 n=1 n=1
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Since small parameter ¢ in (@) and (I0) is at the derivative of higher order,
we can expect boundary layers in the system to appear. They could exist in
the center of the field and at the surface of the disk. This boundary layers are
connected with nonlinear mode not with viscosity. Outside of this boundary
layers, i.e. far from the field center and the disk surface we use ordinary axial
coordinate z. Nearby the disk surface we must use coordinate Z = z/e. Note,
d-like source in ([I]) must be taken in account only in internal solution.

For external region we have the system of equations by substituting the
expansions in equations in two first orders :

Wor = WoWy; 2f(1)Wo = —®y; Ay = p| W) (12)
Wy, = Woly + W0, — Ay,

AW
o o p = @y, AG = (i, ¢ T, (13)

Wy

Suppose the flow and the gravitational field in lowest order are stationary; then
we have solution in this order:

Vo= Cy(r)exps—i [ Wy(r,7)dr, Wy=———,
(x)exp {~i [ Wa(r, T)dr} 27 ()
where function @, is to be obtained from the Poisson equation:
ADy = p|Cyl*. (14)

After some simple manipulations, we arrive at the following solutions at the
first order :

T

Cl( ) ix(rm) _ / W1 I' 7' Co ) X( ’T/)f(T/)A\Do} dT/,
0
B 1 A|Cy|
M=yt

Here

X(r,7) = [ Wa(r,7)dr
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Substituting these expressions in the equation for ®; ([F)we get:
AD; = p(CoCt + C1Cy) + ip[CFAC) — CACHQ(T) — pH(T)V (|Co* Vb))

Here
T T 7 d+"
Q)= [ f(dr', H(r) =[] i F()dr,
0 00
If Kk = kg = const then
1 —KoT . i . i _ _—KoT
Qr) = (1= ™), H(r) =7 = (1 =)

One can see that Q(7) decays exponentially to a constant, whereas H(7) in-
creases linearly with time, i.e. corresponding component is secular, and for
stable solution it should become zero. Hence, we come to the following: taking
into account (Id), functions Cy(r) and Wy(r) must obey the equations such
that

V (|CoPV®) =0, (16)
Ad, = g|00|2. (17)
Then equation (IH) reduces to

2
AD, = p(CoCi + C1C3) + K—MdivHCO\QV@O] (1—e), (18)
0

where C1(r) can be obtained from stationary condition at the next order of
expansion , and ©y = (i/2)In(Cy/Cp) - is still an arbitrary function. The
solution for W follows from the first equation in (I3]).

The interpretation of obtained equations follows from the expression for the
flow velocity in the first order

V1 =V + Vo, V1 = 8VCI)0, Vo = 28f(T)V@()(I’) = 2867H0TV(90(I‘).
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Right hand member in ([H) is determined by the source of mass, which is
associated with the second flow in the system. This flow tends to a fixed space
distribution as 7 — oco. Equation (I0) is the law of conservation of mass for
the flow vi. Suppose sources of mass do not exist; then the second addend in
right hand side of (IH) becomes zero

div([|Co|*VOy] = 0. (19)

If not, we must explicitly write down the source of mass by means of join of
external and internal solution. The first flow is stationary and it is associated in
first order with stationary fall in the field ®,. Existence of dissipation leads to
fall of particles with the fixed velocity v; instead of falling with the acceleration
g = —V(I)O

5 Axial-symmetric solutions

Our aim is to consider models with axial symmetry. Take cylindrical polar
coordinates r, z, ¢ implying dependence functions of the system on r and z

Oo(r, z) = u(r)h(z), R(r,z)=p(r)h(z).

Thus one can find the following equations for u(r), p(r), h(z):

u// 1 u/ h” u/ ! h/ 2
Qe ke _g+(3 pp _
u ru h 2u up h 2u

Separation of variables implies
h(z) = hoe ™.

We should suppose dust density and potential to decay while moving off
the disk in the line of z — 400 as well as z — —o0. Thus if A > 0, we have
h(z) = hoe ! far from the disk surface z = 0.



So we obtain equations for v and p

1
u” + ;u' + Ny = gp, (20)
! !
WP o2y gﬁ —0. (21)
up u

Let us seek the solution for p as: p(r) = q(r)u/(r). Substituting p in above
form into equation (ZI]) and using (20) yield

1
¢ = —q+pg’ =0.

This equation is easy to solve and general solution is
2 r
q(r) = ——5—,
) 1 + Qo
here @)y - integral constant. Finally we get
2 r
p(r) = — u
) pr? + Qo

where u(r) now follows the equation

u” + ¢u’ + Au = 0. 23
r(r? + Qo) (23)
Function p(r) follows, correspondingly, the equation
"4 M
r(r2 4+ Qo)

At small @ or large r the equation for u(r) is similar to oscillation equation

(r), (22)

P+ Np=0. (24)

with wave number A and, hence, u(r) changes the sign quasi-periodically as
well as its derivative.

So we can establish behavior of dust distribution. The definition of p(r)
implies p(r) > 0. The density becomes zero together with the gradient of
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potential according to (22). Thus it follows that disk is partitioned on rings
which are separated by thin gaps. Analysis of equations for flow shows that dust
from certain ring does not penetrate the bounders. The gradients of potential
in adjacent rings, however, have unlike signs due to its quasi-periodic behavior.
But if we require continuity of density and its derivative at boundary points,
we immediately obtain that density must attain a negative value along with
u’. Therefore, the derivative of density has discontinuity at boundaries of rings
and in each ring with constant sign of «’ we should choose the sign and the
magnitude of @ to satisfy requirement p(r) > 0.

Generally boundary conditions for calculation of ring parameters come to
continuity of potential and its derivative at ring boundaries (second derivative
is discontinuous). It follows from equality of forces operating at disk boundaries.

Let r;, @ =1,2... be boundary points in which «'|,, = 0. Then equations
for our model are:

" Qj

YT Q)

with boundary conditions

P
u; +Au; =0, re 7, 7j41]

TjJrl 7”2
“ ] Grrgytnd =

Here o is a constant surface density in j ring.
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Fig.1. 1 - potential u(r) , 2 - density p(r). Ring parameters : A = 1,
=2 Qp=10, Q; = —19.85, Qs = —19.7, Q3 = —155, Q, = —108.

Figure 1 illustrates the different possible solutions satisfying the boundary

conditions.

6 Discussion

We have investigated the formation of rings with too narrow gaps between
them as t — oo. And the width of gaps are considerably smaller then disk
rings one. The masses of rings and distribution of density are determined by
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the coefficient (), that can be unique for each ring. Obtained solutions can be
associated with dust distribution in real disk systems. However, to describe
systems like internal Saturn’s rings we must use other methods because our
approach is not suitable for internal regions. Radial orbital flow induced by
the central mass is the main component of dynamics for internal rings. Nearby
the planet the radial velocity is great but we assume the mechanism of ring
formation to be the same and it can be modified by corrections connected with
the main orbital flow. And it will be the object of another paper.
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